Two tuned multi-objective meta-heuristic algorithms for solving a fuzzy multi-state redundancy allocation problem under discount strategies
نویسندگان
چکیده
In this study, a bi-objective multi-state redundancy allocation problem of series-parallel systems consisting of some serial subsystems, each with non-repairable components in parallel, is investigated. Furthermore, due to uncertainty involved, both the performance rates and the availabilities of components are considered fuzzy. In addition, two strategies of all-unit and incremental-quantity discounts are used to purchase the components and that the fuzzy universal generating function (FUGF) is employed to evaluate the system availability. The aim is to find the optimal redundancy so as within limited budget and system weight the maximum system availability is obtained while the total cost is minimized. Since the bi-objective mathematical formulation of the problem is shown to be strongly NP-hard, a controlled elitism nondominated ranked genetic algorithm (CE-NRGA) is developed to find the Pareto solutions of the problem at hand. Besides, since there is no benchmark available in the literature, a non-dominated sorting genetic algorithm (NSGA-II) is utilized to validate the results obtained. To improve the performance of the adopted algorithms, a multi-objective version of the Taguchi method is used to tune the parameters of the algorithms. Finally, several numerical examples are generated to evaluate the efficiency of the algorithms for which a variety of multi-objective metrics is employed to compare the results.
منابع مشابه
A multi-objective integrated production-allocation and distribution planning problem of a multi-echelon supply chain network: two parameter-tuned meta-heuristic algorithms
Supply chain management (SCM) is a subject that has found so much attention among different commercial and industrial organizations due to competing environment of products. Therefore, integration of constituent element of this chain is a great deal. This paper proposes a multi objective production-allocation and distribution planning problem (PADPP) in a multi echelon supply chain network. We ...
متن کاملSolving a Joint Availability-Redundancy Optimization Model with Multi-State Components with Meta-Heuristic
This paper has been worked on a RAP with multi-state components and the performance rate of each component working state may increase by spending technical and organizational activities costs. Whereas RAP belongs to Np-Hard problems, we used Genetic algorithm (GA) and simulated annealing (SA) and for solving the presented problem and calculating system reliability universal generating function ...
متن کاملMeta-heuristic Algorithms for an Integrated Production-Distribution Planning Problem in a Multi-Objective Supply Chain
In today's globalization, an effective integration of production and distribution plans into a unified framework is crucial for attaining competitive advantage. This paper addresses an integrated multi-product and multi-time period production/distribution planning problem for a two-echelon supply chain subject to the real-world variables and constraints. It is assumed that all transportations a...
متن کاملUsing NSGA II Algorithm for a Three Objectives Redundancy Allocation Problem with k-out-of-n Sub-Systems
in the new production systems, finding a way to improving the product and system reliability in design is a very important. The reliability of the products and systems may improve using different methods. One of this methods is redundancy allocation problem. In this problem by adding redundant component to sub-systems under some constraints, the reliability improved. In this paper we worked on ...
متن کاملBi-objective Optimization of a Multi-product multi-period Fuzzy Possibilistic Capacitated Hub Covering Problem: NSGA-II and NRGA Solutions
The hub location problem is employed for many real applications, including delivery, airline and telecommunication systems and so on. This work investigates on hierarchical hub network in which a three-level network is developed. The central hubs are considered at the first level, at the second level, hubs are assumed which are allocated to central hubs and the remaining nodes are at the third ...
متن کامل